Abstract

Metal-organic frameworks (MOFs) can be designed for chemical applications by modulating the size and shape of intracrystalline pores through selection of their nodes and linkers. Zirconium nodes with variable connectivity to organic linkers allow for a broad range of topological nets that have diverse pore structures even for a consistent set of linkers. Identifying an optimal pore structure for a given application, however, is complicated by the large material space of possible MOFs. In this work, molecular dynamics simulations were used to determine how a MOF's topology affects the diffusion of propane and isobutane over the full range of loadings and to understand how MOFs can be tuned to reduce transport limitations for applications in separations and catalysis. High-throughput simulation techniques were employed to efficiently calculate loading-dependent diffusivities in 38 MOFs. The results show that topologies with higher node connectivity have reduced alkane diffusivities compared to topologies with lower node connectivity. Molecular siting techniques were used to elucidate how the pore structures in different topologies affect adsorbate diffusivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.