Abstract

The aggregate capacity of wireless mesh networks can be improved significantly by equipping each node with multiple interfaces and by using multiple channels in order to reduce the effect of interference. Efficient channel assignment is required to ensure the optimal use of the limited channels in the radio spectrum. In this paper, a cluster-based multipath topology control and channel assignment scheme (CoMTaC), is proposed, which explicitly creates a separation between the channel assignment and topology control functions, thus minimizing flow disruptions. A cluster-based approach is employed to ensure basic network connectivity. Intrinsic support for broadcasting with minimal overheads is also provided. CoMTaC also takes advantage of the inherent multiple paths that exist in a typical WMN by constructing a spanner of the network graph and using the additional node interfaces. The second phase of CoMTaC proposes a dynamic distributed channel assignment algorithm, which employs a novel interference estimation mechanism based on the average link-layer queue length within the interference domain. Partially overlapping channels are also included in the channel assignment process to enhance the network capacity. Extensive simulation based experiments have been conducted to test various parameters and the effectiveness of the proposed scheme. The experimental results show that the proposed scheme outperforms existing dynamic channel assignment schemes by a minimum of a factor of 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call