Abstract
The utilization of liquid ammonia in gas turbines can reduce energy loss and start-up time. However, the flash boiling phenomenon and the high latent heat of liquid ammonia make the spray flame difficult to stabilize. Increasing the preheated air temperature or adding a small amount of hydrogen as a piloted fuel are considered as effective methods to enhance the stability. To understand the flame topological structure, simultaneous Mie scattering and planar laser-induced fluorescence of OH (OH-PLIF) techniques were used to visualize the liquid ammonia spray structure and flame region information. Results show that the liquid ammonia swirl spray flame exhibits the flame topological structure of distinct zoning characteristics, including the droplet zone, the mixing zone, and the flame zone. Increasing the preheated air temperature accelerates the evaporation of liquid ammonia, leading to an increase in the local equivalence ratio and radial flame splitting. At lower air temperature conditions, increasing the hydrogen blending ratio has minimal impact on the flame topological structure. However, at higher temperature conditions, hydrogen blending significantly promotes reaction intensity upstream and reduces the flame lift-off height, which makes the mixing zone smaller. In general, to achieve a better flame stability effect, the two factors need to be reasonably matched, which has important reference value for the development of liquid ammonia fueled gas turbine combustors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.