Abstract
This paper is devoted to the topology-based dynamic event-triggered leader-following consensus issue of general linear multi-agent systems under switching topological structures. The novel topology-based distributed dynamic event-triggered rule is formed, in which a topology-based dynamic auxiliary variable is introduced to reduce the conservatism and save resources. Under novel triggering rules, topology-based distributed event-triggered controllers are constructed. Different control gains are designed for different topological structures. Compared with existing works, conservatism is further reduced. Then the leader-following consensus is achieved with a global exponential convergence rate. Moreover, the average dwell time method is adopted to relax restrictions on the switching speed of topological structures and an original analytical thought is put forward to rule out the Zeno phenomenon concisely and clearly. Finally, two numerical examples and a realistic mass–spring system are utilized to verify the feasibility and superiority of the proposed theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.