Abstract

A model of the disturbed magnetic field and disturbed velocity of flux transfer events (FTEs) is deduced on the basis of the vortex‐induced reconnection theory. The topology and signatures of FTEs are calculated and discussed. We propose that the observed forms of FTE signatures depend on the motional direction of the FTE tube, the positions of the spacecraft relative to the passing FTE tube, and which part of the FTE tube (the magnetosphere part, the magnetopause part, or the magnetosheath part) the spacecraft is passing through. It is found that when a FTE tube moves from south to north along a straight line in the northern hemisphere, positive FTEs appear for most passages; however, reverse FTEs are also observed occasionally while the signatures of BZ (BL) appear as a single peak, and the irregular FTEs always correspond to oblique line motions of the FTE tube. The velocity signatures are similar to those of the magnetic field, but in the northern hemisphere their directions are all just opposite to the magnetic field. The calculated results for the magnetic field are compared with 61 observed FTEs. The observed signatures (BN and BL) of 52 FTEs are consistent with our calculations. The results indicate that a majority of observed FTEs correspond to passages of spacecraft through the edges of FTE tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.