Abstract

AbstractThe designability and ultrahigh stability of zirconium–organic frameworks make them attractive adsorbents for noble gases xenon (Xe) and krypton (Kr), but their Xe/Kr separation performance needs to be further enhanced. In this study, we rationally control the topology and porosity of zirconium–fumarate frameworks by simply changing the synthesis conditions, and successfully construct an adsorbent (named as MIP‐203‐F) with one‐dimensional pore instead of the original cage‐like fcu metal–organic framework MOF‐801. The Xe/Kr separation performance of MIP‐203‐F is thoroughly evaluated by isotherm measurements and breakthrough experiments, while the adsorption mechanism is elucidated in detail by Monte Carlo and density functional theory calculations. Due to the uniform pore with suitable size and abundant polarization groups, MIP‐203‐F can differentially polarize and recognize atomic Xe/Kr gases, and establishes a new record among zirconium–organic frameworks for the capture and separation of Xe/Kr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call