Abstract

This paper is dedicated to the study of the topologies and nesting configurations of the components of the zero set of monochromatic random waves. We prove that the probability of observing any diffeomorphism type and any nesting arrangement among the zero set components is strictly positive for waves of large enough frequencies. Our results are a consequence of building Laplace eigenfunctions in euclidean space whose zero sets have a component with prescribed topological type or an arrangement of components with prescribed nesting configuration. © 2018 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.