Abstract
Space, as we typically represent it in mathematics and physics, is composed of dimensionless, indivisible points. On an alternative, region-based approach to space, extended regions together with the relations of ‘parthood’ and ‘contact’ are taken as primitive; points are represented as mathematical abstractions from regions.Region-based theories of space have been traditionally modeled in regular closed (or regular open) algebras, in work that goes back to [5] and [21]. Recently, logics for region-based theories of space were developed in [3] and [19]. It was shown that these logics have both a nice topological and relational semantics, and that the minimal logic for contact algebras, Lmincont (defined below), is complete for both.The present paper explores the question of completeness of Lmincont and its extensions for individual topological spaces of interest: the real line, Cantor space, the rationals, and the infinite binary tree. A second aim is to study a different, algebraic model of logics for region-based theories of space, based on the Lebesgue measure algebra (or algebra of Borel subsets of the real line modulo sets of Lebesgue measure zero). As a model for point-free space, the algebra was first discussed in [2]. The main results of the paper are that Lmincont is weakly complete for any zero-dimensional, dense-in-itself metric space (including, e.g., Cantor space and the rationals); the extension Lmincont+(Con) is weakly complete for the real line and the Lebesgue measure contact algebra. We also prove that the logic Lmincont+(Univ) is weakly complete for the infinite binary tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.