Abstract

We report on a spatial mapping of the electronic and vibrational structure of three-dimensional (3D) nanoporous graphene architectures, which have a hierarchical pore structure. We demonstrate that the topology, curvature, and pores lead to local changes in the electronic and vibrational structure and in the hybridization states of the carbon atoms (sp2 vs. sp3-like). Nitrogen substitutions in pyrrolic bonding configurations also contribute to local distortions of the planar geometry of graphene. The distortions influence the electronic density of states at the Fermi level by shifting the Dirac cone apex, opening potential avenues for applications of two-dimensional graphene in 3D devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.