Abstract
With the improvement of natural gas network interconnection, the network topology becomes increasingly complex. The significance of analyzing topology is gradually becoming prominent, and a systematic analysis method is required. This paper selects two typical natural gas pipeline networks: one in Europe, and the other in North China. Based on complex network theory and the nature of natural gas pipelines, topological models for the two typical networks were established and the evaluation indexes were developed based on four factors: network type, overall topological structure characteristics, path-related topological structure characteristics, and topological structure robustness. Using these indexes, the topological structure of the two typical networks is compared and analyzed quantitatively. The comparison shows that the European network topology has more redundancy, higher transmission efficiency, and greater robustness. The topology analysis method proposed in this paper is practical and suitable for the preliminary analysis of natural gas pipeline networks. The conclusions achieved by this method can assist operators in gaining an intuitive understanding of the overall characteristics, robustness, and key features of pipeline network topology, which is useful in the implementation of hierarchical prevention and control. It also serves as a solid theoretical foundation and guidance for network expansion, interconnection construction, and precise hydraulic simulation calculation in the next stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.