Abstract
VPN service providers (VSP) and IP-VPN customers have traditionally maintained service demarcation boundaries between their routing and signaling entities. This has resulted in the VPNs viewing the VSP network as an opaque entity and therefore limiting any meaningful interaction between the VSP and the VPNs. A key challenge is to expose each VPN to information about available network resources through an abstraction (TA) [1] which is both accurate and fair. In [2] we proposed three decentralized schemes assuming that all the border nodes performing the abstraction have access to the entire core network topology. This assumption likely leads to over- or under-subscription. In this paper we develop centralized schemes to partition the core network capacities, and assign each partition to a specific VPN for applying the decentralized abstraction schemes presented in [2]. First, we present two schemes based on the maximum concurrent flow and the maximum multicommodity flow (MMCF) formulations. We then propose approaches to address the fairness concerns that arise when MMCF formulation is used. We present results based on extensive simulations on several topologies, and provide a comparative evaluation of the different schemes in terms of abstraction efficiency, fairness to VPNs and call performance characteristics achieved.
Highlights
Topology abstraction (TA) as a VPN service has been described in [1]
We study the performance of these formulations by running over well known provider networks referred from [8], and we characterize their performance in terms of two metrics: the aggregate flow achieved by the formulation from which abstraction efficiency is obtained and the fairness of the commodity flows among the commodities
These schemes assume that all the border nodes performing the abstraction have access to the entire core network topology
Summary
The motivation for this service is the following: 1) Providing TA information to the VPNs allows them to seek resources from the VSP with high degree of success. With TA service, as we will observe, the VPNs achieve very good crankback ratio performance compared to VPNs that are not provided with any form of abstraction. This gain is significant as it reduces the call processing burden on the VSP which would otherwise be required to process these calls
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.