Abstract
We determine all finite maximal elementary abelian group actions on compact oriented surfaces of genus σ ≥ 2 which are unique up to topological equivalence. For certain special classes of such actions, we determine group extensions which also define unique actions. In addition, we explore in detail one of the families of such surfaces considered as compact Riemann surfaces and tackle the classical problem of constructing defining equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.