Abstract
Let V be an infinite-dimensional locally convex complex space, X a closed subset of P(V) defined by finitely many continuous homogeneous equations and E a holomorphic vector bundle on X with finite rank. Here we show that E is holomorphically trivial if it is topologically trivial and spanned by its global sections and in a few other cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.