Abstract

We introduce and study two properties of dynamical systems: topologically transitive and topologically mixing under the set-valued setting. We prove some implications of these two properties for set-valued functions and generalize some results from a single-valued case to a set-valued case. We also show that both properties of set-valued dynamical systems are equivalence for any compact intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.