Abstract

It is not known if a commutative, topologically simple, radical Banach algebra exists. If, however, every derivation on such an algebra is continuous, this yields the automatic continuity of all derivations on commutative, semiprime Banach algebras. Utilising techniques used by Thomas in his proof of the Singer-Wermer conjecture, we show that, if A is a commutative, topologically simple Banach algebra with a non-zero derivation on it, then a quotient of a certain localisation of A has a power series structure. A pivotal role is played by what we call ample sets of denominators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.