Abstract
Entanglement and topology portray nature at the fundamental level but differently. Entangled states of particles are intrinsically sensitive to the environment, whereas the topological phases of matter are naturally robust against environmental perturbations. Harnessing topology to protect entanglement has great potential for reliable quantum applications. Generating topologically protected entanglement, however, remains a significant challenge, requiring the operation of complex quantum devices in extreme conditions. Here we report topologically protected entanglement emitters that emit a topological Einstein–Podolsky–Rosen state and a multiphoton entangled state from a monolithically integrated plug-and-play silicon photonic chip in ambient conditions. The device emulating a photonic anomalous Floquet insulator allows the generation of four-photon topological entangled states at non-trivial edge modes, verified by the observation of a reduced de Broglie wavelength. Remarkably, we show that the Einstein–Podolsky–Rosen entanglement can be topologically protected against artificial structure defects by comparing the state fidelities of 0.968 ± 0.004 and 0.951 ± 0.010 for perfect and defected emitters, respectively. Our topologically protected devices may find applications in quantum computation and in the study of quantum topological physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.