Abstract

We discuss the representations of the algebra of quantization, the canonical commutation relations, in a scalar quantum field theory with spontaneously broken U(1) internal symmetry, when a topological defect of the vortex type is formed via the condensation of Nambu–Goldstone particles. We find that the usual thermodynamic limit is not necessary in order to have the inequivalent representations needed for the existence of physically disjoint, stable phases of the system. This points to a novel notion of spontaneous symmetry breaking, one where the volume can stay finite, an instance that makes our treatment substantially different from the usual semiclassical (NOLGA) approach to vortices. This new type of inequivalence is different from the well-known inequivalence occurring for the quantum particle on the circle. We finally comment on possible applications to quantum gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.