Abstract

Nowadays, explosive synchronization is a well-documented phenomenon consisting in a first-order transition that may coexist with classical synchronization. Typically, explosive synchronization occurs when the network structure is represented by the classical graph Laplacian, and the node frequency and its degree are correlated. Here, we answer the question on whether this phenomenon can be observed in networks when the oscillators are coupled via degree-biased Laplacian operators. We not only observe that this is the case but also that this new representation naturally controls the transition from explosive to standard synchronization in a network. We prove analytically that explosive synchronization emerges when using this theoretical setting in star-like networks. As soon as this star-like network is topologically converted into a network containing cycles, the explosive synchronization gives rise to classical synchronization. Finally, we hypothesize that this mechanism may play a role in switching from normal to explosive states in the brain, where explosive synchronization has been proposed to be related to some pathologies like epilepsy and fibromyalgia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.