Abstract

The topology of conjugated macrocycles had significant impacts on their photo-physical and photo-chemical properties. Herein, a series of π-conjugated macrocycles with diverse topology were synthesized via intramolecular McMurry coupling. Their chemical structure and macrocyclic topology were unambiguously confirmed via NMR, MALDI-TOF mass spectra, crystal analysis and scanning tunneling microscopy (STM). Depending on the structural topology and structural rigidity, these cyclic compounds display obviously distinctive emission behavior and photochemical reactions in the solution and in the solid state. Monocyclic phenylene vinylene macrocycle (denoted as MST) exhibiting aggregation-induced emission behavior, was more vulnerable to photo-cyclization in solution and triplet sensitizer promoted photo-dimerization due to lower strain and more flourishing intramolecular motions. After UV light irradiation, relatively more flexible MST could yield the anti-dimer via triplet excimer on the HOPG surface confirmed by STM investigation. By contrast, highly constrained bicyclic analogue (named as DMTPE) with central tetraphenylethene core, displayed high emission quantum yields of 68% both in solution and in the solid state, and was relatively inert to photochemical reactions and yield syn-dimer on the surface via singlet excimer involved [2 + 2] photo-dimerization. Based on the solution-mediated photo-polymerization of MST moiety, multicyclic porous carbon-rich ribbon connected with four-membered ring was successfully constructed and validated via STM imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call