Abstract

Ultrahigh-Q chiroptical resonance metasurfaces based on merging bound states in the continuum (BICs) are investigated and numerically demonstrated. The destruction of C2 symmetry results in the leakage of BICs into quasi-BICs, and a chiral quasi-BIC is obtained by oblique incidence or continuous destruction of the mirror symmetry of the structure. Due to the significant topological properties of merging BICs, the Q factor (over 2 × 105) of the chiral resonance peak obtained is much higher than that of the previous work. Moreover, the proposed structure is easy to fabricate because no additional out-of-plane asymmetry is introduced. The proposed scheme is of importance in chiral biosensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.