Abstract

SUMMARYDistinguishing between conserved and divergent regulatory mechanisms is essential for translating preclinical research from mice to humans, yet there is a lack of information about how evolutionary genome rearrangements affect the regulation of the immune response, a rapidly evolving system. The current model is topologically associating domains (TADs) are conserved between species, buffering evolutionary rearrangements and conserving long-range interactions within a TAD. However, we find that TADs frequently span evolutionary translocation and inversion breakpoints near genes with species-specific expression in immune cells, creating unique enhancer-promoter interactions exclusive to the mouse or human genomes. This includes TADs encompassing immune-related transcription factors, cytokines, and receptors. For example, we uncover an evolutionary rearrangement that created a shared LPS-inducible regulatory module between OASL and P2RX7 in human macrophages that is absent in mice. Therefore, evolutionary genome rearrangements disrupt TAD boundaries, enabling sequence-conserved enhancer elements from divergent genomic locations between species to create unique regulatory modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call