Abstract

A new family of oxalate-bridged chains of formula (C(1))[Mn(H(2)O)(3)Cr(ox)(3)]·H(2)O (1), (C(2))(4)[Mn(2)(H(2)O)(3)ClCr(2)(ox)(6)]Cl·H(2)O·2C(2)H(6)O (2a), (C(2))(4)[Co(2)(H(2)O)(3)ClCr(2)(ox)(6)]Cl·2H(2)O·2C(2)H(6)O (2b), [Mn(C(3))(H(2)O)(2)Cr(ox)(3)]·H(2)O (3), and (C(4))(4)[Mn(H(2)O){Cr(ox)(3)}(2)]·H(2)O (4) [C(1)(+) = tetramethylammonium, C(2)(+) = 4-N,N-dimethylaminopyridinium, C(3)(+) = 1-hydroxyethyl-4-N,N-dimethylamino-pyridinium, C(4)(+) = 1-hydroxyethyl-4-(4'-dimethylamino-α-styryl)-pyridinium, ox(2-) = oxalate] have been synthesized by self-assembly of the (C(n))(3)[Cr(ox)(3)] (n = 1-4) mononuclear compound and the chloride salts of the corresponding metal(II) ions. The crystal structures of the five chain compounds have been determined by single-crystal X-ray diffraction. Compounds 1 and 2 crystallize in the Pc and P2(1)/c centrosymmetrical space groups, respectively, whereas 3 and 4 crystallize in the C2cb and P1 noncentrosymmetrical space groups, respectively. Compounds 1, 2, and 3 adopt a zigzag chain structure while 4 exhibits a comb-like chain structure consisting of the repetition of the [Mn(H(2)O){Cr(μ-ox)(ox)(2)}{Cr(μ-ox)(2)(ox)}](4-) entities. Compound 3 displays large second-order optical nonlinearity. The magnetic properties of 1-4 have been investigated in the temperature range 2-300 K. Monte Carlo simulations on 1, 2a, 2b, and 3 provide a quantitative description of the magnetic properties indicating ferromagnetic interactions through the bis(bidentate) oxalate bridges [J = +0.55 cm(-1) (1), J = +1.02 cm(-1) (2a), J = +3.83 cm(-1) (2b), and J = +0.75 cm(-1) (3) using Hamiltonian Ĥ = -J(Ŝ(i)·Ŝ(j))]. On the other side, the fit of the magnetic susceptibility data of 4 by full-matrix diagonalization agrees with a ferromagnetic exchange interaction within the [Mn(H(2)O){Cr(μ-ox)(ox)(2)}{Cr(μ-ox)(2)(ox)}](4-) trinuclear units (J = +2.07 cm(-1)) antiferromagnetically coupled along the chain. Compound 2b exhibits a metamagnetic behavior, the value of the critical field being H(C) = 1000 G, due to the occurrence of weak interchain antiferromagnetic interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call