Abstract

The scalar and vector topological Yang-Mills symmetries determine a closed and consistent sector of Yang-Mills supersymmetry. We provide a geometrical construction of these symmetries, based on a horizontality condition on reducible manifolds. This yields globally well-defined scalar and vector topological BRST operators. These operators generate a subalgebra of maximally supersymmetric Yang-Mills theory, which is small enough to be closed off-shell with a finite set of auxiliary fields and large enough to determine the Yang-Mills supersymmetric theory. Poincar\'e supersymmetry is reached in the limit of flat manifolds. The arbitrariness of the gauge functions in BRSTQFTs is thus removed by the requirement of scalar and vector topological symmetry, which also determines the complete supersymmetry transformations in a twisted way. Provided additional Killing vectors exist on the manifold, an equivariant extension of our geometrical framework is provided, and the resulting "equivariant topological field theory" corresponds to the twist of super Yang-Mills theory on Omega backgrounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.