Abstract

Topological type-II nodal line semimetal (NLS) was proposed quite recently and exhibits distinct properties compared with conventional type-I NLS. To date, no ambient-condition stable candidate material has been reported. Here we propose that a stable Kagome compound Mg3Bi2 can host a type-II nodal line state with the protection of time reversal and spatial inversion symmetries. Similar to type-I NLSs, the type-II nodal line in Mg3Bi2 is characterized by the drumhead surface states, which has not been observed in the previous type-II NLSs. The nodal line in Mg3Bi2 can open a minor gap, and a pair of 3D Dirac points occurs when SOC is included. The SOC-induced gap around the nodal line is quite small, and the formation of 3D Dirac points is independent of the nodal line. Therefore, the Mg3Bi2 compound is expected to be a good candidate to investigate the exotic properties of both type-II NLS and 3D Dirac semimetal states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call