Abstract

We propose a heterogeneous structure, which are composed of two valley photonic crystals (VPCs) with opposite valley Chern numbers and air channel. With the increasing width of the air channel, valley-locked waveguide modes are found in topological bandgap by analyzing energy bands. Finite element method (FEM) simulation results show that the fundamental and high order modes are valley-locked, propagating unidirectionally under the excitation of chiral source, and possess higher flux compared to the valley-locked topological edge state in the domain wall. Besides, the immunity to backscattering in bend and couplers, and the robustness to random disorders are discussed in detail. We also investigate the one-way multimode interference (MMI) effect based on valley-locked waveguide modes, and design topological beam splitters. Our study provides a novel idea for topological transport with high flux, and more freedom to design valley-locked waveguide devices, including bends, couplers and splitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.