Abstract

A thin disk accompanied by spindle-like jet, created commonly near massive central objects, exhibits a topologically singular aspect when viewed from an ideal macroscopic theory. The accreting inflow and jet's outflow are "singular perturbation" on the ambient Keplerian rotation, which are generated by some nonideal higher order (in the order of derivatives) effects. The Hall effect can generate such a structure in a weakly ionized plasma of a protostellar disk. Numerical estimate of the characteristic length scale defined by the singular perturbation justifies the precedence of the Hall effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.