Abstract

This article presents a review of recent investigations of topological three-dimensional (3D) dissipative optical solitons in homogeneous laser media with fast nonlinearity of amplification and absorption. The solitons are found numerically, with their formation, by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around a vortex straight line with their simultaneous twist. After a transient, the 'hula-hoop' solitons can form with a number of closed and unclosed infinite vortex lines, i.e. the solitons are tangles in topological notation. They are attractors and are characterized by extreme stability. The solitons presented here can be realized in lasers with fast saturable absorption and are promising for information applications. The tangle solitons of the type described present an example of self-organization that can be found not only in optics but also in various distributed dissipative systems of different types.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call