Abstract

We present the first theoretical evidence of zero magnetic field topological (anomalous) thermal Hall effect due to Weyl magnons in stacked noncoplanar frustrated kagomé antiferromagnets. The Weyl magnons in this system result from macroscopically broken time-reversal symmetry by the scalar spin chirality of noncoplanar chiral spin textures. Most importantly, they come from the lowest excitation, therefore they can be easily observed experimentally at low temperatures due to the population effect. Similar to electronic Weyl nodes close to the Fermi energy, Weyl magnon nodes at the lowest excitation are the most important. Indeed, we show that the topological (anomalous) thermal Hall effect in this system arises from nonvanishing Berry curvature due to Weyl magnon nodes at the lowest excitation, and it depends on their distribution (distance) in momentum space. The present result paves the way to directly probe low excitation Weyl magnons and macroscopically broken time-reversal symmetry in three-dimensional frustrated magnets with the anomalous thermal Hall effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call