Abstract

We study the ground states of low-density hadronic matter and high-density color-flavor locked color superconducting phase in three-flavor QCD at finite baryon chemical potential under rotation. We find that, in both cases under sufficiently fast rotation, the combination of the rotation-induced topological term for the η′ meson and the QCD anomaly leads to an inhomogeneous condensate of the η′ meson, known as the chiral soliton lattice (CSL). We find that, when baryon chemical potential is much larger than isospin chemical potential, the critical angular velocity for the realization of the η′ CSL is much smaller than that for the π0 CSL found previously. We also argue that the η′ CSL states in flavor-symmetric QCD at low density and high density should be continuously connected, extending the quark-hadron continuity conjecture in the presence of the rotation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.