Abstract
Proteins encompassing the two catalytic domains (monooxygenase and lyase) and the COOH-terminal domain of rat peptidyiglycine α-amidating monooxygenase (rPAM) 3 were purified from recombinant Escherichia coli overexpressing each domain and used to raise domain-specific polyclonal antibodies. Four alternatively spliced forms of PAM RNA (PAM-1, -2, -3, and -4) were transcribed in vitro and used to synthesize PAM proteins in a cell-free translation system. The orientation of the proteins in microsomal membrane vesicles was analyzed using trypsin protection assays and immunoprecipitation with the domain-specific antibodies. Only one of the two potential N-glycosylation sites (Asn 765-Phe-Ser) in PAM-1 was efficiently utilized by microsomal membranes. PAM-1 and PAM-2 were shown to be type Ia membrane proteins with their two catalytic domains residing within microsomal vesicles and their COOH-terminal domains exposed to the cytosol. In contrast, PAM-3 and PAM-4 were shown to be soluble proteins contained entirely within vesicles. Thus, the COOH-terminal domain underwent topological switching between the cytosolic (PAM-1 and -2) and luminal (PAM-3) compartments as a function of alternative splicing of exons B a/B b. Computer analyses of the PAM protein sequence correlated the exons encoding PAM-1 with a model for the structural and functional domains of the PAM protein. The dual topologies of the PAM proteins confer an important means of functional regulation to this secretory granule associated neuropeptide processing enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.