Abstract
We determine the topological susceptibility χt in two-flavor QCD using the lattice simulations at a fixed topological sector. The topological charge density is unambiguously defined on the lattice using the overlap-Dirac operator which possesses exact chiral symmetry. Simulations are performed on a 163×32 lattice at lattice spacing ∼ 0.12 fm at six sea quark masses mq ranging in ms/6−ms with ms the physical strange quark mass. The χt is extracted from the constant behavior of the time-correlation of flavor-singlet pseudo-scalar meson two-point function at large distances, which arises from the finite size effect due to the fixed topology. In the small mq regime, our result of χt is proportional to mq as expected from chiral effective theory. Using the formula χt=mqΣ/Nf by Leutwyler–Smilga, we obtain the chiral condensate in Nf=2 QCD as ΣMS¯(2 GeV)=[252(5)(10) MeV]3, in good agreement with our previous result obtained in the ϵ-regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.