Abstract

Topological insulators with high spin–orbit coupling and helically spin-momentum-locked topological surface states (TSSs) can serve as efficient spin current generators for modern spintronics applications. We used the industrial-friendly DC magnetron sputtering technique to fabricate magnetic heterostructures consisting of Bi2Te3 (BT) as a topological insulator and Co60Fe20B20 (CFB) as a magnetic layer and studied the temperature-dependent spin pumping, utilizing out-of-plane ferromagnetic resonance spectroscopy. These results demonstrate that the effective spin-mixing conductance is significantly affected by the contribution of two-magnon scattering (TMS). It is found that the TMS-free effective spin-mixing conductance increases with decreasing temperature. Additionally, results from magneto-transport measurements indicate that the surface coherence length of BT is in accordance with the temperature-dependent effective spin-mixing conductance. This enhancement of effective mixing conductance correlated with the enhancement in the contribution of the TSSs as evaluated using the weak-anti-localization effect. This study provides a deeper understanding of the temperature-dependent spin dynamics in sputtered BT/CFB heterostructures which can serve as a guide for further exploration of such bilayers for topological-based spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call