Abstract

We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-$k_z$-dispersive surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like $p$-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.