Abstract

We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin–orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin–orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen–Cooper– Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin–orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde–Ferrell–Larkin–Ovchinnikov state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.