Abstract

Chains of magnetic atoms placed on the surface of an s-wave superconductor with large spin-orbit coupling provide a promising platform for the realization of topological superconducting states characterized by the presence of Majorana zero-energy modes. In this work we study the properties of the one-dimensional chain of Yu-Shiba-Rusinov states induced by magnetic impurities using a realistic model for the magnetic atoms that include the presence of multiple scattering channels. These channels are mixed by the spin-orbit coupling and, via the hybridization of the Yu-Shiba-Rusinov states at different sites of the chain, result in a multi-band structure for the chain. We obtain the topological phase diagram for such band structure. We identify the parameter regimes for which the different bands lead to a topological phase and show that the inclusion of higher bands can greatly enlarge the phase space for the realization of topological states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.