Abstract

Regular arrays of magnetic atoms on a superconductor provide a promising platform for topological superconductivity. In this work, we study the effects of disorder in these systems, focusing on vacancies realized by missing magnetic atoms. We develop approaches that allow treatment of ferromagnetic dense chains as well as long-range hopping ferromagnetic and helical Shiba chains at arbitrary subgap energies. Vacancies in magnetic chains play an analogous role to magnetic impurities in a clean $s$-wave superconductor. A single vacancy in a topological chain gives rise to a low-lying ``anti-Shiba'' state below the band edge of a regular magnetic chain. Proliferation of the anti-Shiba band formed by a finite density of hybridized vacancy states leads to deterioration of the topological phase, which exhibits unusual fragility in a particular parameter region in dilute chains. We also consider local fluctuation in the Shiba coupling and discuss how vacancy states could contribute to experimental verification of topological superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.