Abstract
We propose and experimentally realize a new kind of bound states in the continuum (BICs) in a class of systems constructed by coupling multiple identical one-dimensional chains, each with inversion symmetry. In such systems, a specific separation of the Hilbert space into a topological and a nontopological subspace exists. Bulk-boundary correspondence in the topological subspace guarantees the existence of a localized interface state which can lie in the continuum of extended states in the nontopological subspace, forming a BIC. Such a topological BIC is observed experimentally in a system consisting of coupled acoustic resonators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.