Abstract
By using φ-mapping topological current theory and gauge potential decomposition, we discuss the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new concrete self-dual equation with a δ function. For the SU(3) case, we obtain a new self-duality solution and find the relationship between the soliton solution and topological number which is determined by the Hopf index and Brouwer degree of φ-mapping. In our solution, the flux of this soliton is naturally quantized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.