Abstract

The paper is devoted to establishing the solvability and topological property of solution sets for the fractional evolution inclusions of Sobolev type. We obtain the existence of mild solutions under the weaker conditions that the semigroup generated by -AE^{-1} is noncompact as well as F is weakly upper semicontinuous with respect to the second variable. On the same conditions, the topological structure of the set of all mild solutions is characterized. More specifically, we prove that the set of all mild solutions is compact and the solution operator is u.s.c. Finally, an example is given to illustrate our abstract results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.