Abstract

Abstract This article investigates the topological structural of the mild solution set for a control problem monitored by semilinear fractional impulsive evolution equations with nonlocal conditions. The $R_{\delta }$-property of the mild solution set is obtained by applying the measure of noncompactness and a fixed point theorem of condensing maps and a fixed point theorem of nonconvex valued maps. Then this result is applied to prove that the presented control problem has a reachable invariant set under nonlinear perturbations. The obtained results are also applied to characterize the approximate controllability of the presented control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.