Abstract

A one-dimensional metamaterial with parity-time (${\cal PT}$) symmetry that relies on balanced gain and loss is introduced, comprising of magnetically coupled split-ring resonators (SRRs). A particular topology that combines a non-trivial (topological) dimer configuration with a trivial (non-topological) dimer configuration which are separated by a central SRR with neither gain or loss, is investigated. By focusing on the dynamical aspects of such a topological ${\cal PT}$ metamaterial (PTMM), the existence of {\em topologically protected interface states} which are localized at the central SRR is demonstrated numerically. The solution of the corresponding {\em quadratic eigenvalue problem} reveals that the protected state is actually a robust eigenmode of the topological PTMM, whose eigenvalue is isolated in the middle of the gap (mid-gap state) of the two-band frequency spectrum. Direct numerical simulations have been further used to determine the robustness and dynamic stability of these states in the parameter space of the {\em dimerization strength} and the {\em gain-loss coefficient}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call