Abstract
In this work, using ab initio many-body theory and inspired by an idea suggested by G. D. Mahan for an abstract N-dimensional chain composed of s-type atoms ( Phys. Rev. Lett. 2009, 102, 016801), we propose a functional topological spin-charge gearbox based on the real synthesized Co3Ni(EtOH) cluster driven with laser pulses. We analyze the implications arising from the use of a real molecule with d-character functional orbitals rather than an extended system and discuss the role of the point group symmetry of the system and the transferability of the electronic and spin density between different many-body states using specially designed laser pulses. We thus find that first-row transition-metal elements can host unpaired yet correlated d electrons and thus act as sites for spin information carriers, while designated laser pulses induce symmetry operations leading to a realizable spin-charge gearbox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.