Abstract

A major challenge in developing topological superconductors for implementing topological quantum computing is their characterization and control. It has been proposed that a p-wave gapped topological superconductor can be fabricated with single-atom precision by assembling chains of magnetic atoms on s-wave superconductors with spin-orbit coupling. Here, we analyze the Bogoliubov quasiparticle interference in atom-by-atom constructed Mn chains on Nb(110) and for the first time reveal the formation of multi-orbital Shiba bands using momentum resolved measurements. We find evidence that one band features a topologically non-trivial p-wave gap as inferred from its shape and particle-hole asymmetric intensity. Our work is an important step towards a distinct experimental determination of topological phases in multi-orbital systems by bulk electron band structure properties only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call