Abstract

Autonomous vehicle self-localization must be robust to environment changes, such as dynamic objects, variable illumination, and atmospheric conditions. Topological maps provide a concise representation of the world by only keeping information about relevant places, being robust to environment changes. On the other hand, semantic maps correspond to a high level representation of the environment that includes labels associated with relevant objects and places. Hence, the use of a topological map based on semantic information represents a robust and efficient solution for large-scale outdoor scenes for autonomous vehicles and Advanced Driver Assistance Systems (ADAS). In this work, a novel topological semantic mapping and localization methodology for large-scale outdoor scenarios for autonomous driving and ADAS applications is presented. The methodology uses: (i) a deep neural network for obtaining semantic observations of the environment, (ii) a Topological Semantic Map (TSM) for storing selected semantic observations, and (iii) a topological localization algorithm which uses a Particle Filter for obtaining the vehicle’s pose in the TSM. The proposed methodology was tested on a real driving scenario, where a True Estimate Rate of the vehicle’s pose of 96.9% and a Mean Position Accuracy of 7.7[m] were obtained. These results are much better than the ones obtained by other two methods used for comparative purposes. Experiments also show that the method is able to obtain the pose of the vehicle when its initial pose is unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.