Abstract

We investigate the self-organization of strongly interacting particles confined in 1D and 2D. We consider hardcore bosons in spinless Hubbard lattice models with short-range interactions. We show that many-body states with topological features emerge at different energy bands separated by large gaps. The topology manifests in the way the particles organize in real space to form states with different energy. Each of these states contains topological defects/condensations whose Euler characteristic can be used as a topological number to categorize states belonging to the same energy band. We provide analytical formulas for this topological number and the full energy spectrum of the system for both sparsely and densely filled systems. Furthermore, we analyze the connection with the Gauss-Bonnet theorem of differential geometry, by using the curvature generated in real space by the particle structures. Our result is a demonstration of how states with topological characteristics, emerge in strongly interacting many-body systems following simple underlying rules, without considering the spin, long-range microscopic interactions, or external fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.