Abstract

The electroactivity of zeolite-encapsulated redox-active transition metal complexes, {M(L)}Z, was explored for Co(salen) and [Fe(bpy)3]2+ formed in NaY zeolite (where salen = N,N‘-bis(salicylidene)ethylenediamine and bpy = 2,2‘-bipyridine). The zeolite boundary was characterized via X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry in nonaqueous electrolyte at either zeolite-modified electrodes (ZMEs) or a stirred microheterogeneous dispersion of the redox-modified zeolite. Voltammetric incongruities arising for {M(L)}Z studied as a ZME rather than as a dispersion are attributed to changes imposed on the redox-modified zeolite by the mechanical force used to prepare a ZME. An increase in the time in which a mixture of {[Fe(bpy)3]2+}NaY and carbon are either ground or pressed produces improved peak resolution and an initial but short-lived increase in the magnitude of the voltammetric peak currents. Cyclic voltammetry of a stirred dispersion of {M(L)}Z particles at a large surface area electrod...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.