Abstract

AbstractWe study the ‐point differentials corresponding to Kadomtsev–Petviashvili (KP) tau functions of hypergeometric type (also known as Orlov–Scherbin partition functions), with an emphasis on their ‐deformations and expansions. Under the naturally required analytic assumptions, we prove certain higher loop equations that, in particular, contain the standard linear and quadratic loop equations, and thus imply the blobbed topological recursion. We also distinguish two large families of the Orlov–Scherbin partition functions that do satisfy the natural analytic assumptions, and for these families, we prove in addition the so‐called projection property and thus the full statement of the Chekhov–Eynard–Orantin topological recursion. A particular feature of our argument is that it clarifies completely the role of ‐deformations of the Orlov–Scherbin parameters for the partition functions, whose necessity was known from a variety of earlier obtained results in this direction but never properly understood in the context of topological recursion. As special cases of the results of this paper, one recovers new and uniform proofs of the topological recursion to all previously studied cases of enumerative problems related to weighted double Hurwitz numbers. By virtue of topological recursion and the Grothendieck–Riemann–Roch formula, this, in turn, gives new and uniform proofs of almost all Ekedahl–Lando–Shapiro–Vainshtein (ELSV)‐type formulas discussed in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.