Abstract

Flow through a narrow bent channel may induce topological rearrangements in a two-dimensional monodispersed dry liquid foam. We use the Cellular Potts Model to simulate a foam under a variable driving force in order to investigate the strain-rate response from these rearrangements. We observe a set of foams' behaviors ranging from elastic, viscoelastic to fluid regime. Bubble's topological rearrangements are localized and their cumulative rearrangements change linearly with time, thus nonavalanches critical behavior is found. The strain-rate affects the rate of topological rearrangements, its dependence on the drag force is nonlinear, obeying a Herschel–Bulkley-like relationship below the foam's flow point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call