Abstract

AbstractA venerable problem in combinatorics and geometry asks whether a given incidence relation may be realized by a configuration of points and lines. The classic version of this would ask for lines in a projective plane over a field. An important variation allows for pseudolines: embedded circles (isotopic to $\mathbb R\rm{P}^1$) in the real projective plane. In this article we investigate whether a configuration is realized by a collection of 2-spheres embedded, in symplectic, smooth, and topological categories, in the complex projective plane. We find obstructions to the existence of topologically locally flat spheres realizing a configuration, and show for instance that the combinatorial configuration corresponding to the projective plane over any finite field is not realized. Such obstructions are used to show that a particular contact structure on certain graph manifolds is not (strongly) symplectically fillable. We also show that a configuration of real pseudolines can be complexified to give a configuration of smooth, indeed symplectically embedded, 2-spheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.