Abstract

We study the quantum phase transition between Abelian and non-Abelian phases in an extended Kitaev spin model on the honeycomb lattice, where the periodic boundary condition is applied by placing the lattice on a torus. Our analytical results show that this spin model exhibits a continuous quantum phase transition. Also, we reveal the relationship between bipartite entanglement and the ground-state energy. Our approach directly shows that both the entanglement and the ground-state energy can be used to characterize the topological quantum phase transition in the extended Kitaev spin model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.